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Fig. 3. Attenuation of Tf3u and TMu waves versus frequency.
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Fig. 4. Comparison ofattenuation of TEuwavefor O =0 °anc18 = 90°.

CONCLUSION

The cutoff frequencies and attenuation of waves in a ridged cir-
cular waveguide are calculated. The results suggest that a ridged

circ@ar waveguide has a ‘lower loss and larger bandwidth than those

of a smooth circular wayeguide for the dominant TEI1 wave polarized
in ridge-pair plane in the normal operating band. Attenuation of

TEII wave in a ridged circular waveguide is minimum when the

waye is polarized in the ridge-pair plane (6 = 0°) and is maximum
when thewave ispolariped normal totheridge-pair plane (I9 = 90”).

Conclusions reached here are drawn from the calculations of a
formulation based onperturbation tlieory. The results do not hold
for large r/a, however. Since the exact field distribution within the
waveguide is unknowp, error can only be estimated. For design
purposes, however, the. err,orean reestimated forifixed~/a on the
basis of a comparison between (1) and the more exact solutions
~4],’ [5] for a rectangular waveguide with a same wall-deformation.
For example, the cutoff ’frequency-shift based on (1) is calculated

@ a rectangular waveguide with a rectangular longitudinal ridge

attriched in the’H plane with dimensions corresponding to r/a’=

0.275 in Fig. 2. The, result is then compared to that of Cohn’s work
[4]andap errqr is obtained. If this s?meerror isassumed for the

case of ridged circular guide, then the cutoff frequency-shift is
estimated to be within .0.65 percent for TEu mode and 0.77 percent
for TM,, mode. Fora circular ridge which is the cape in this study,
the result is expected to be somewhat better, because of the smooth-
ness of the wall-boundary, although a complete error analysis for
thewide range of r/ain I?igs. 2’-+ hasnotbeen carried out.
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Magnetostatic Surface Waves in Ferrite Slab Adjacentto

Semiconductor

MASAMITSU MASUDA, MEMBER, IEEE, NION S. CHANG,
MEMBER,IEEE, ANDYUKITOMATSUO

Abstracf—Magnetostatic surface waves propagating along the

ferrite slab adjacent to a semiconductor are discussed in this paper.

Our numerical results indicate that the” conductivity of the semi-

conductor plays an important role in the determination of the dis-

persion relation in the case of nondrifting carriers. The backward

wave appears for a finite value of the conductivity.

I. INTRODUCTION

Magnetostatic modes propagating along a ferromagnetic elab in

free space were firet examined by Damon and Eshbach [1] (DE

waves). “Applying a de magnetic field transverse to the direction of

the wave propagation, the surface wave which corresponds to the
@ = 90° spin wave is excited.’Thk wave is unique to the slab con-
figuration. Seshadri [2] considered the caee where a metal conductor

was placed on one face of the slab. Sucha grounded ferrite slab has
two different surface waves which propagate in opposite direction
toeachother. Both surface waves are forward modee. Subsequently,
Bongianni [3] discussed magnetostatic waves in the dielectric-
layered structure where the dielectric material was between aYIG
film and a perfect conductor. A backward wave appears at some

value of the thickness of the dielectric layer. On the other hand, the

general theory of the surface wave on a metallized ferrite film, includ-
ingdipolar, exchange, and conductivity effects, has been treated by

Wolfram and DeWames [4].
Our interest is not only in the behavior of the magnetostatic

waves but also in the wave interaction between the ferrite and the
semiconductor. It has been suggested that the solid-state traveling

wave amplifier (STWA) can be constructed with a layered structure
containing both materials [5 ]–[7 ]. A detailed understanding of the
coupling of the spin wave in ferrite and the carrier wave in semiconduc-
tor is important for the design of STWA. Preliminary to a discussion
of the amplification process, we deal in the present paper with the
magnetostatic surface waves propagating along a ferrite slab adja-
cent to a semiconductor. The finite conductivity of the semiconductor

gives us remarkable changes to the properties of the surface waves.

The dispersion relationship can be obtained by solving the boundary

value problem for three regions of ferrite, semiconductor, and free

space.

II. ANALYSIS

The geometry treated in this paper is a layered structure con-
stituted bv a ferrite slab and a semiconductor laver in free s~ace, as
shown in ‘Fig. 1. The external dc magnetic field is applied ‘parallel
to the y direction. The propagating directions of magnetostatic sur-
face waves and the carrier flow in the semiconductor are chosen to
be in the z direction. Our two-dimensional analysis is based on the
assumptions that the wave varies as exp j (cot — @z) and that all
properties are independent of ~ (~/dy = 0).

The field components in the semiconductor region, which is a
collision-dominated system for electrons, satisfy the following

equations:

VXH=J+joe8E (1)

VXE= –jwpOH (2)

VXE=ple, (3)

J = POV+ PVO (4)

v=,iis(E +vx Bo+vox B) (5)

Iwo 01 ~

/is= oLuo, fit = v/E, P. = av/dE (6)
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Fig. 1. Geometry for our analysis.

where c. is thepermittivity of semiconductor and p. is the tensor of
electron mobility; however, w = m = v/E in the isotropic medium
such as InSb. Subscript 1 which usually denotes RF quantities is
omitted, but subscript O refers to dc quantities.

The invariance of the fields in the y direction leads to two un-

coupled waves: one has the field components Es, E,, and Hv (TM-
mode) and the other has Hz, H,, and Ey (TE-mode). The former is

the longitudinal space charge wave modified by the dc magnetic

field. Inconsidering the effect of themagneticf ieldfor Gunn-effect

domain formation, the TM-mode is important. The latter wave is
regarded as a kind of carrier wave which is described by the next
equations:

&Ey

ax2 –
~,2Ev = O (7)

.,=,++(+} (,)

()Bz=–~EU (9)
w

(lo)

where flQ = w/vo, fl.~ = pOpt/e,vO, and K.~ = &E,prJ.
From the same two-dimensional analysis appled to the ferrite

region, it is evident that the wave due to the precession of spins in

the ferrite has the components H=, H., and E., as generally known.
Therefore, the TE-mode must be chosen in the semiconductor.

From (7)

Eu = Cle-y.’. (11)

When the wavenumber ~ ranges over 10 <p <103 cm-l, the

quasi-static approximation is valid. The TE-mode obtained from
thetwo-dimensional analysis in ferrite and free-space regions corre-

sponds to the magnetostatic surface modes. Considering the lossless
ferrite slab, therelative permeability tensor p,is

/4 O –jp2

,L7, = o 1 0 I (12)

where Hi is the internal dc magnetic field, 47rM, the saturation

magnetization, and T the gyromagnetic ratio. The RF magnetic

field can be described as the gradient of a magnetic scalar potential @

V*B = o (15)

B = ~C@fH. (16)

From (12), (14)-(16),

t)%
%2 – &#l = o. (17)

The following expression for ~, H., and Bz in each region can be

derived from the above equations. For O 5 x 5 b in ferrite,

@= C2el~i’ + C3e-l@12 (18a)

H. = j~f$ = jgl (C2el~l”+ c8e-l@[’) (18b)

. PO {c2e’B’= (PIld – L@)– cd’= (Ad + I@) }. (18c)

For z ~ O in free space,

@ = C,eldlz (19a)

H. = j@C,el@lz (19b)

B. = –pOl@\C,el~l’. (19C)

Applying the boundary conditions that both H. and B. are con-
tinuous at each interface and eliminating C,, C,, C,, and C, from the
related equations, we can obtain the following dispersion relation:

ez,p,b= {(M + !4s)7s’ – 11(/4 – Im – 1)

{(/4 – W3)78’ + l](M +Ms + 1)
(20)

where s = L?/161 and -r,’ = -Y./l6l. AS the wave propagates along
either +Z or —z direction, s takes on the value +1 or — 1. Consider-
ing that l@ >> lc.~ is reasonable in the semiconductor, the approxi-
mated equation for Y.’ can be obtained from (8):

where u is the conductivity.
Equations (2o), (21), and (13) yield the following polynomial

expression for the normalized angular frequency F ( = o/~,) :

g (F) = T,F’ + T,F4 + TJ?8 + T,F’ + T,F + TO (22)

where

T,=j
pouco,w

{

yyem}m 4eZl@lb Gs (e’l~lb – 1) – (l~lb) ~

pouu,bz
2’, = 8Gse’[@lb(e’lfl[b – 1) – j —

[

Gz(ed$b _ l)Z

(W)’

[
– 4e21~l’ (1 + G) {e21~lb(2 + G) – G)

—
. porw,bz

Tt = –4e’l@l’(e21@lb– 1)G(2 + G) – ~ —
[

2Gs(e’l~lb – 1)
(Idb)z

()

~,b -1
x (1 + G) {e21elb(2 + G) – G} + (l@lb) ~ [G’!(ed$ib _ 1)2

—4e21#lb(l + G) (ed#i6(2’ + Q – G)] 1
~Ouu,b2

T, = –2Gs (e’l~lb – 1) {e’1~1’(2 + G)’ – G’) + j —
(Idb)z

[
x (1 + G) {e’i~ib(2 + G) – G) (1 + G) {e21@lb(2+ G) – G)

()+2(16\b) ‘~ “ Gs(ezl$lb – 1) 1
T, = (1 + G)z{e’l~lb(2 + G) – G)’ – {2e’1~[6 + G(e’1@16+ 1) )2

~ouu,b2
–j

()
m (l@lb) ‘~ “ (1 + G) ’{e21@lb(2+ G) – G}’ (23)

and G = fJIM/U?.



134 IEEE

S=–1
2.5 ----— ------------------------ ~.~~

Seshadri WsVe

2.3-

2.1-

Sg

1.9-

1.7-

1.5 -

t
0.5

1“0 Iplb 1“5
2.0

(a)

Fig, 2.

TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1974

1.75 L 750

1.70-

1.65-

1.60-

1.561

Wdve

1.55
3

0.5 1.0 1.5 2.0

[~ib

(b)

Re (F) - I ~ I b diagrams, where the conductivity is variable, H; =4OO Oe, 47rM. = 600 G, and b= IOOpm. (a)
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Fig. 3. Im (F) – IL3 [ b diagrams. (a) Fors = -1. (b) I?ors = +1.

Theequation that g(F) = Omayhave five complex root.s ofF for
some value of f?, but it isourpurpose toelucidate the behavior of the
magnetostatic surface wave propagating along the ferrite slab adja-
cent to the semiconductor. In order to obtain the asymptotic solu-
tions for (22), the Newton–Raphson method in a complex region
was applied to our computer computation. A pair of solutions

(Fe, l@lb) for the DE wave were chosen as the initial value, where
F, is real.

III. RESULTS AND DISCUSSION

Itcanbe predicted from (23) that the factor commonly contained
in all coefficients, which is ~Ou~,b, exerts a crucial influence on the
dispersion relation. With respect to constant values of c+ and b, we
examined how the properties of a magnetostatic surface wave was
modulated by the conductivity of a, semiconductor in the absence of
a bias voltage (Vo = O).

Thedia~amsof Re (F) – Iplbobtained from ourcomputer mm-

putation aresketched in Fig. 2. Theparameter Nwhich implies the
variation of the conductivity satisfies the next relation:

~ = ~OP~ = e X 10@I’b@ mho/m (24)

where eistheelectronic charge andnOthe doping density. Theappli-
cation of n-InSb at 77 K realizes the situation at N = 4 or 5, for
example no = 1016-17 cm–s and pt = 104 cm2/~. s. At N = 3, it may
be possible to use n-GaAs in room temperature. In N ~ 6, it is
necessary to use the heavily doped semiconductor which is more
metallic.

As is evident from Fig. 2(a) and (b), the propagation character-
istics for —z direction are different from those for +Z direction. This

phenomenon is dependent on whether the magnetostatic surface
wave propagates along the plane at z = b or x = O. For s = — 1,

since the magnetic potential distribution is concentrated at the inter-
face between the ferrite slab and the semiconductor, the surface
wave is particularly sensitive to the conductivity. Both the DE wave
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and the Seshadri ws,ve in the limiting cases of our theory are forward

waves; however, the finite conductivity of the semiconductor makes
it possible to excite backward waves. When the conductivity is

increased, the discrepancy from the DE wave is first larger in smaller

wavenumber and the passband becomes broader. At N = 4, the dis-

persion curve can cross over the upper bound of the frequency
spectrum for the DE wave. As it approaches to the Seshadri wave,
the characteristic of the backward wave disappears gradually. On
the other hand, in the case ofs = +1 where the surface wave propa-
gates along the interface at z = O, no remarkable changes of the
properties can be observed [Fig. 2 (b)] and this wave is similar to
the DE wave.

The diagrams of Im (F) – IBI as shown in Fig. 3 offer the infor-
mation about the attenuation for the surface wave. Significant

interaction between the surface wave and the electrons in the semi-
conductor is expected. In the absence of a bias voltage, this inter-

action can be regarded as the dominant cause of loss for the surface

wave over the range 1 ~ /V ~ 5. Furthermore, the higher conduc-
tivity makes the semiconductor so metallic that the well-known skin

effect may play an important role at N z 6. Fig. 3 implies that the
optimum coupling of spins and electrons can be attained in the
neighborhood of N = 5. In the presence of drifting carriers in the
semiconductor, the wave interaction leads to the creation of the
growing wave. It is natural that the loss fors = +1 is less than that
for s = – 1 by about –20 dB.

IV. CONCLUSION

The magnetostatic surface waves in the ferrite slab adjacent to the
semiconductor have been investigated in the previous sections. Our

analytical results have pointed out that the propagation character-

istics of the surface wave are affected considerably by the finite
conductivity of the semiconductor in the absence of bias voltage.
In particular the backward waves are excited. It is believed that

optimum coupliig of spins and electrons is attained in the neighbor-
hood of N = 5. If drifting carriers are present in the semiconductor,
it is anticipated that the wave interaction will result in a growing

wave, thereby providing gain. In addition, it may be possible to
construct a voltage-tuned delay line by utilizing the composite
structure constituted of YI G-film and the semiconductor.
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Coupled-Mode Analysis of Longitudinally

Ferrite Phase Shifters

Magnetized
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Abstract—Application of a coupled-mode formalism to longi-

tudinally magnetized ferrite phase shifters provides an explanation

of the increase or decrease of insertion phase with increasing mag-
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netization which is observed in cliff erent types of phase shifters. If

the higher order mode is TM, the phase shift increases with mag-

netization while the reverse happens if the higher order mode is TE.

The generalized telegraphists’ equations are used to analyze the

TEM phase shifter. The maximum phase shift that can be obtained

is determined by the effective permeability of the ferrite. However,

coupling to higher order cutoff modes reduces the phase shift

significantly.

I. INTRODUCTION

In their classic paper Suhl and Walker [1] examined propagation
in a ferrite-filled coaxial waveguide magnetized to saturation along

the direction of propagation. They showed that, if the spacing be-

tween inner and outer conductors was sufficiently smaIl, for the
dominant (quasi-TEM ) mode the ferrite could be represented as

an isotropic lossless medium with an effective permeability y given by

/J — #

Peff = —
P

where

and

Wu.
~=—

U02 — ~z

are the elements of the Polder tensor [2]

with

where

w

47rM,
HO

‘Y
Po

rM ‘jK O-

(la)

1~=po jK p O

0 0 l_

a- = (27r7 ) (4rrM.)

co, = (2m7)H,

microwave radian frequency;
ferrite saturation magnetization;

external dc magnetic field;
2.8 MHz/Oe:

permeability ‘of free space equals 4K X 10-7 H/m.

(lb)

(lC)

(2)

Through symmetry arguments they also showed that the same result

was valid for propagation in a longitudinally magnetized ferrite
contained between perfectly conducting parallel planes, in the limit

of small spacing between the planes.
In this paper, longitudinally magnetized ferrites in guided wave

structures are examined. Coupled-mode theory is employed to gain
insight into the general characteristics of such structures. A detailed

analysis of the TEM phase shifter is undertaken to examine the

variation of effective permeability and hence, phase shift, with
plate spacing.

II. COUPLED-MODE THEORY

In this section we describe how differential phase shift is obtained
in longitudinally magnetized ferrite structures. We approach the

problem from the viewpoint of mode coupling between the dominant
mode and cutoff modes capable of storing electromagnetic energy.

This type of analysis has successfully predicted the behavior of the
Faraday rotation phase shifter [3] and is the only plausible explana-

tion of the Reggia-Spencer phase shifter [4]-[6].

Since the anisotropy of (2) exists only in the transverse plane,
we may define a transverse tensor permeability as

[ 1w ‘jK
& = PO

j’K p
(3)

Now consider two transmission lines which are nonreciprocally

coupled by this medium. If VI and 11 represent the uncoupled Volt-


