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Fig. 4. Comparison of attenuation of TEwy wave for @ = 0°and § = 90°.

CoNcLUSION

The cutoff frequencies and attenuation of waves in a ridged cir-
cular waveguide are calculated. The results suggest that a ridged
cireylar waveguide has.a lTower loss and larger bandwidth than those
of a smooth cireular waveguide for the dominarit TE;, wave polarized
in ridge-pair plane in'the normal operating band.. Atfentuation of
TE;; wave in a ridged circular waveguide i minimum when the

" wave is polarized in the ridge-pair plane (6 = 0°) and i$ maximum
when. the wave i§ polarized normal to the ridge-pair plane (6 = 90°).

Conclusions reached here are drawn from the calculations of a
formulation based on perturbation theory. The results do not hold
for large 7/a, however. Since the exact field distribution within the
waveguide is unknown, error can only be estimated. For design
purposes, however, the error can be estimated for a fixed 7/a on the
basis of a comparison between (1) and the more exact solutions
[47, [5}for a rectangular waveguide with a same wall-deformation.
For.exaniple, the cutoff'frequency-shift based on (1) is calculated
in"a rectangular waveguide with a rectangular longitudinal ridge
attached in the 'H plane with dimensions corresponding to r/a’'=
0.275 in Fig. 2. The result is‘then compared to that of Cohn’s work
[4] and an error is obtained. If this same ‘error-is assumed for the
case -of rldged “circular guide, -then the cutoff fréquency-shift is
estimated to be within 0.65 percent for TEy mode and 0.77 percent
for TMy; mode. For a circular ridge which is the case in this-study,

the result is expected to be somewhat better, because of the smooth- -

ness of -the wall- boundary, although a .complete error:analysis for
the wide range of r/a in Flgs 2-4 has not been carrled out

REFERENCES

[1]1 T. Charlton, Andrew Corporatlon, Orland Park, Ill
munication, ‘Jan. 1970.

2] R. -F. Harnngton, Time Harmonic Electromagnetw Fields.

' York McGraw-Hill, 1961, p. 327,

{3} 8. Ramo-and J. R. Wmnnery erlds and Waves in Modern Radio.

‘ New York: Wlley, 1965, p. .

4] 8 CGohn, ¢ Propert1es of mdged Wave guide,”’ Proc. IRE vol. 35,

' pp 783—788 Aug 1947,

8] E. V. Jull, W, J. Bleackley, and M. M. Steen, ‘“The design of wave-
guides vnth symmetrically placed double ridges,”” IEEE Trans.

‘ Mzcrowtwe Theory Tech., vol. MTT 17, pp 397-399, July 1969.

private com-

New

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1974

Magnetostatlc Surface Waves in Ferrite Slab Ad]acent to
Semconductor

MASAMITSU MASUDA, mEMBER, 18EE, NION 8. CHANG,
MEMBER, IEEE, AND YUKITO MATSUO

Abstract—Magnetostatic surface waves propagating along the
ferrite slab adjacent to a semiconductor are discussed in this paper.
Our numerical results indicate that the conductivity of the semi-
conductor plays an important role in the determination'of the dis-
persion relation in the case of nondrifting carriers. The backward
wave appears for a finite value of the conduct1v1ty

1. INnTRODTCTION

Magnetostatic modes propagating along a ferromagnetic.slab in
free space were first examined by Damon and Eshbach [1] (DE
waves). Applying a dc magnetic field transverse to the direction of
the wave propagation, the surface wave which corresponds to the
6 = 90° spin wave is excited. This wave is unique to the slab con-
figuration. Seshadri [2] considered the case where a metal conductor
was placed on one face of the slab. Such a grounded ferrite slab has
two different surface waves which propagate in opposite direction
to each other. Both surface waves are forward modes. Subsequently,
Bongianni [37 discussed magnetostatic waves in the dielectric-
layered structure where the dielectric matérial was between a YIG
film and a perfect conductor. A backward wave appears at some
value of the thickness of the dielectric layer. On the other hand, the
general theory of the surface wave on a metallized ferrite film, includ-
ing dipolar, exchange, and conductivity effects, has been treated by
Wolfram and DeWames [4].

Our interest is not only in the behavior of the magnetostatlc
waves but also in the wave interaction between the ferrite and the
semiconductor. It has been suggested that the solid-state traveling
wave amplifier (STWA) can be constructed with a layered structure
containing both materials [51-[7]. A detailed undetstanding of the
couphng of the spin wave in ferrite and the carrier wave in semiconduc-
tor is important for the design of STWA. Preliminary to a discussion
of the amplification process, we deal in the present paper with the
magnetostatic surface waves propagating along a ferrite slab adja-
cent to a semiconductor. The finite conductivity of the semiconductor
gives us remarkable changes to the properties of the surface waves.
The dispersion relationship can be obtained by solving the boundary
value problem for three regions of ferrlte, semiconductor, and free
space

II. ANALYSIS

The geometry treated in this paper is a layered structure con-
stitited by a ferrite slab and a semiconductor layer in free space, as
shown in Fig. 1. The external dc maguetic field is applied parallel
to.the y direction. The propagating directions of magnetostatic sur-
face waves and the carrier flow in the semiconductor are chosen to
be in the z direction. Our two-dimensional analysis is based on the
assumptions that the wave varies as exp j(ot — j2) and that all
properties are 1ndependent of y(8/9y = 0).

The field components in the semiconductor region, which is a
collision-dominated system for electrons, satisfy the following
equatlons

VX H = J + jooE (1)
VXE= — jouH 2
VXE=p/e 3)

J=P0V_+PV0 (4)
V=5a(E+VXB +V XB) (8)
we 0 0 7o

B= [0 w 0|, w=v/E u=0E
0 0
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Fig. 1. Geometry for our analysis.

where e, is the permittivity of semiconductor and j, is the tensor of
electron mobility; however, p¢ = . = v/E in the isotropic medium
such as InSb. Subscript 1 which usually denotes RF quantities is
omitted, but subscript 0 refers to de quantities.

The invariance of the fields in the y direction leads to two un-
coupled waves: one has the field components E., E., and H, (TM-
mode) and the other has H,, H., and E, (TE-mode). The former is
the longitudinal space charge wave modified by the dec magnetic
field. In considering the effect of the magnetic field for Gunn-effect
domain formation, the TM-mode is important. The latter wave is
regarded as a kind of carrier wave which is described by the next
equations:

K,
dx?

Bet 8

=g -kl -2 2
p { JBo( 30)} ®)
Bz=_<§>Ey 9)

oE,
n-i(Z) %
mw,/ 0%

where By = w/vo, Bet = poue/evo, and K2 = wleuy.

From the same two-dimensional analysis appled to the ferrite
region, it is evident that the wave due to the precession of spins in
the ferrite has the components H,, H,, and E,, as generally known.

Therefore, the TE-mode must be chosen in the semiconductor.
From (7)

— vstE, =0 (7

(10)

By = Cievs®, 11)

When the wavenumber B ranges over 10 < 8 < 105 em™, the
quasi-static approximation is valid. The TE-mode obtained from
the two-dimensional analysis in ferrite and free-space regions corre-
sponds to the magnetostatic surface modes. Considering the lossless
ferrite slab, the relative permeability tensor g, is

w0 — jue
m=10 1 o (12)
Juz O m
mo= 1 = M = GH: e = yedaM, (13)
Wt — w? — w

where H; is the internal dc magnetic field, 4w/, the saturation
magnetization, and v the gyromagnetic ratio. The RF magnetic
field can be described as the gradient of a magnetic scalar potential ¢.

H=-v4 (14)
V-B =0 15)
B = poiH. (16)
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From (12), (14)-(16),

¢ 2
— - = 0. 17
— - a7)
The following expression for ¢, H., and B, in each region can be
derived from the above equations. For 0 < z < b in ferrite,

¢ = Cyelblz 4 Cie~lbls (18a)
H. = jB¢ = jB(Codlfle 4 Cielblz) (18b)

By = po(uH, — juH.)
= o {Coe'®l= (1|8] — psB) — Cae 12 ([B] + paB) }. (18¢)

For z < 0 in free space,

¢ = Culfl= (19a)
H, = jpC.elel= (19b)
B, = —u|8|Cselfl. (19¢)

Applying the boundary conditions that both H. and B. are con-
tinuous at each interface and eliminating Ci, Cs, Cs, and C, from the
related equations, we can obtain the following dispersion relation:

{ (1 + pes)ys’ — 1} (m — pas — 1)
{(ue — wos)vs’ + 1} (a4 pas + 1)

where s = 8/|8] and v, = v,/|8]. As the wave propagates along
either 4z or —z direction, s takes on the value +1 or —1. Consider-
ing that |8% >> ks is reasonable in the semiconductor, the approxi-
mated equation for v, can be obtained from (8):

el =

(20)

Moo

v =1 +J— (@ — |Blve) (21)

where o is the conductivity.
Equations (20), (21), and (13) yield the following polynomial
expression for the normalized angular frequency F(=w/w,):

g(F)y = T5F° + T F* + TsFs + ToF* + TWF Ty (22)
where
uovwrb geslely
(IBIb)2
”Ww’b olln 2181b b - 2lgls
(1ﬁ| )24 Gs(e?lflo — 1) — (|8lb) ¢
= Ilb (o2lbls — 1) — ”0“” 5 (g2l8l6 _ 132
Ts = 8Gse?'f' (e 1) (13|b)2 G2 (e )

— 471810 [(1 + @) (el (2 + @) — G}

wb\ 1
+ (l8b) <—v:) Gs (erlsle — 1)]]

Ty = —4edflb(elsl — 1)G(2 + @) — ‘ﬁ;lbr) [2Gs(ez'ﬂlb ~1)
X (1+6) (@ +G) = G} + (8b) (";—) [ (eals — 12
— 48l (1 + @) (el (2 + @) — G}]]

T, = —2Gs (¥ — 1) {82 + @) — G2} + 5 (T;Tb;):
X 1 +G) {2+ 6) — 6 [(1 + @) {2 + G) — G}

+2(6lb) (‘”—”) Gs(eo® — 1)
Yo
= (14 Gefeth@e +6) — Q)2 — {22816 - G(ed8lb - 1) }2
('];Tb’)z (I8lb) ( ) T+ @@ 4+ 6) — @)

and G = wyr/wr.

(23)
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The equation that ¢(F) = 0 may have five complex roots of F for
some value of 8, but it is our purpose to elucidate the behavior of the
magnetostatic surface wave propagating along the ferrite slab adja-
cent to the semiconductor. In order to obtain the asymptotic solu-
tions for (22), the Newton—Raphson method in a complex region
was applied to our computer computation. A pair of solutions
(Fo, |8b) for the DE wave were chosen as the initial value, where
Fyis real.

III. Resurrs AND DiscUssioN

It can be predicted from (23) that the factor commonly contained
in all coefficients, which is wow,b, exerts a crucial influence on the
dispersion relation. With respect to constant values of w, and b, we
examined how the properties of a magnetostatic surface wave was
modulated by the conduetivity of a semiconductor in the absence of
a bias voltage (v, = 0).

The diagrams of Re (F) — ||b obtained from our computer com-

putation are sketched in Fig. 2. The parameter N which implies the
variation of the conductivity satisfies the next relation:

o = engu; = € X 1008 mho/m (24)

where ¢ is the electronic charge and n, the doping density. The appli-
cation of n-InSb at 77 K realizes the situation at N = 4 or 5, for
example 1y = 1017 em™8 and p; = 104 em?/V-5. At N = 3, it may
be possible to use n-GaAs in room temperature. In N > 6, it is
necessary to use the heavily doped semiconductor which is more
metallic.

As is evident from Fig. 2(a) and (b), the propagation character-
istics for —z direction are different from those for +z direction. This
phenomenon is dependent on whether the magnetostatic surface
wave propagates along the plane at # = b or z = 0. For s = —1,
since the magnetic potential distribution is concentrated at the inter-
face between the ferrite slab and the semiconductor, the surface
wave is particularly sensitive to the conductivity. Both the DE wave
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and the Seshadri wave in the limiting cases of our theory are forward
waves; however, the finite conductivity of the semiconductor makes
it possible to excite backward waves. When the conductivity is
increased, the discrepancy from the DE wave is first larger in smaller
wavenumber and the passband becomes broader. At N = 4, the dis-
persion curve can cross over the upper bound of the frequency
spectrum for the DE wave. As it approaches to the Seshadri wave,
the characteristic of the backward wave disappears gradually. On
the other hand, in the case of s = 41 where the surface wave propa-
gates along the interface at £ = 0, no remarkable changes of the
properties can be observed [Fig. 2(b)] and this wave is similar to
the DE wave.

The diagrams of Im (F) — |8} as shown in Fig. 3 offer the infor-
mation about the attenuation for the surface wave. Significant
interaction between the surface wave and the electrons in the semi-
conductor is expected. In the absence of a bias voltage, this inter-
action can be regarded as the dominant cause of loss for the surface
wave over the range 1 < N < 5. Furthermore, the higher conduc~
tivity makes the semiconductor so metallic that the well-known skin
effect may play an important role at N > 6. Fig. 3 implies that the
optimum coupling of spins and electrons can be attained in the
neighborhood of N = 5. In the presence of drifting carriers in the
semiconductor, the wave interaction leads to the creation of the
growing wave. It is natural that the loss for s = 41 is less than that
for s = —1 by about —20 dB.

IV. ConcLusioN

The magnetostatic surface waves in the ferrite slab adjacent to the
semiconductor have been investigated in the previous sections. Our
analytical results have pointed out that the propagation character-
istics of the surface wave are affected considerably by the finite
conductivity of the semiconductor in the absence of bias voltage.
In particular the backward waves are excited. It is believed that
optimum coupling of spins and electrons is attained in the neighbor-
hood of N = 5. If drifting carriers are present in the semiconductor,
it is anticipated that the wave interaction will result in a growing
wave, thereby providing gain. In addition, it may be possible to
construct a voltage-tuned delay line by utilizing the composite
structure constituted of YIG-film and the semiconductor.
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Coupled-Mode Analysis of Longitudinally Magnetized
Ferrite Phase Shifters
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Abstract—Application of a coupled-mode formalism to longi-
tudinally magnetized ferrite phase shifters provides an explanation
of the increase or decrease of insertion phase with increasing mag-

Manuscript received March 28, 1973; revised August 31, 1973. This
work was supported in part by a subcontract from the Monsanto Re-
search Corporation, Dayton, Ohio, under Contract F33615-72-C-1034,
from the Air Force Avionics Laboratory, Wright-Patterson Air Force
Base, Dayton, Ohio.

W. E. Hord is with the Department, of Engineering, Southern Ilinois
University, Edwardsville, Ill. 62025. .

F. J. Rosenbaum is with the Department of Electrical Engineering,
‘Washington University, St. Louis, Mo. 63130

135

netization which is observed in different types of phase shifters. If
the higher order mode is TM, the phase shift increases with mag-
netization while the reverse happens if the higher order mode is TE.

The generalized telegraphists’ equations are used to analyze the
TEM phase shifter, The maximum phase shift that can be obtained
is determined by the effective permeability of the ferrite. However,
coupling to higher order cutoff modes reduces the phase shift
significantly.

I. INnTRODUCTION

In their classic paper Suhl and Walker [1] examined propagation
in a ferrite-filled coaxial waveguide magnetized to saturation along
the direction of propagation. They showed that, if the spacing be-
tween inner and outer conductors was sufficiently small, for the
dominant (quasi-TEM) mode the ferrite could be represented as
an isotropic lossless medium with an effective permeability given by

Mz_Kz

Hetf = (1a)
where
W,
p=1+—" (1b)
Wy — W
and
W,
i (10)
are the elements of the Polder tensor [2]
v —jx O
E=pyje wu O 2)
0 0 1
with
o = (27v) (4xM,)
wo = (2wy)Ho
where
w microwave radian frequency;

4rM, ferrite saturation magnetization;

H, external dc magnetic field;

v 2.8 MHz/Oe;

Ko permeability of free space equals 47 X 1077 H/m.

Through symmetry arguments they also showed that the same result
was valid for propagation in a longitudinally magnetized ferrite
contained between perfectly conducting parallel planes, in the limit
of small spacing between the planes.

In this paper, longitudinally magnetized ferrites in guided wave
structures are examined. Coupled-mode theory is employed to gain
insight into the general characteristics of such structures. A detailed
analysis of the TEM phase shifter is undertaken to examine the
variation of effective permeability and hence, phase shift, with
plate spacing.

II. CouprLeED-MODE THEORY

In this section we describe how differential phase shift is obtained
in longitudinally magnetized ferrite structures. We approach the
problem from the viewpoint of mode coupling between the dominant
mode and cutoff modes capable of storing electromagnetic energy.
This type of analysis has successfully predicted the behavior of the
Faraday rotation phase shifter [3] and is the only plausible explana-
tion of the Reggia—Spencer phase shifter [4]-[6].

Since the anisotropy of (2) exists only in the transverse plane,
we may define a transverse tensor permeability as

v —jx
Bo= Mo[ ] . )
jx m

Now consider two transmission lines which are nonreciprocally
coupled by this medium. If V; and I1 represent the uncoupled volt-



